Catestatin attenuates endoplasmic reticulum induced cell apoptosis by activation type 2 muscarinic acetylcholine receptor in cardiac ischemia/reperfusion

نویسندگان

  • Feng Liao
  • Yang Zheng
  • Junyan Cai
  • Jinghui Fan
  • Jing Wang
  • Jichun Yang
  • Qinghua Cui
  • Guoheng Xu
  • Chaoshu Tang
  • Bin Geng
چکیده

Catestatin (CST) is a catecholamine secretion inhibiting peptide as non-competitive inhibitor of nicotinic acetylcholine receptor. CST play a protective role in cardiac ischemia/reperfusion (I/R) but the molecular mechanism remains unclear. Cardiomyocytes endogenously produced CST and its expression was reduced after I/R. CST pretreatment decreased apoptosis especially endoplasmic reticulum (ER) stress response during I/R. The protection of CST was confirmed in H9c2 cardiomyoblasts under Anoxia/reoxygenation (A/R). In contrast, siRNA-mediated knockdown of CST exaggerated ER stress induced apoptosis. The protective effects of CST were blocked by extracellular signal-regulated kinases 1/2 (ERK1/2) inhibitor PD90895 and phosphoinositide 3-kinase (PI3 K) inhibitor wortmannin. CST also increased ERK1/2 and protein kinase B (Akt) phosphorylation and which was blocked by atropine and selective type 2 muscarinic acetylcholine (M2) receptor, but not type 1 muscarinic acetylcholine (M1) receptor antagonist. Receptor binding assay revealed that CST competitively bound to the M2 receptor with a 50% inhibitory concentration of 25.7 nM. Accordingly, CST inhibited cellular cAMP stimulated by isoproterenol or forskolin, and which was blocked by selective M2 receptor antagonist. Our findings revealed that CST binds to M2 receptor, then activates ERK1/2 and PI3 K/Akt pathway to inhibit ER stress-induced cell apoptosis resulting in attenuation cardiac I/R injury.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exendin-4 attenuates high glucose-induced cardiomyocyte apoptosis via inhibition of endoplasmic reticulum stress and activation of SERCA2a.

Hyperglycemia-induced cardiomyocyte apoptosis contributes to diabetic cardiomyopathy. Glucagon-like peptide-1 (Glp1) receptor (Glp1r) agonists improve cardiac function and survival in response to ischemia-reperfusion and myocardial infarction. The present studies assessed whether Glp1r activation exerts direct cardioprotective effects in response to hyperglycemia. Treatment with the Glp1r agoni...

متن کامل

Reduction of Mitochondria-Endoplasmic Reticulum Interactions by Acetylcholine Protects Human Umbilical Vein Endothelial Cells From Hypoxia/Reoxygenation Injury.

OBJECTIVE We explored the role of endoplasmic reticulum (ER)-mitochondria Ca(2+) cross talk involving voltage-dependent anion channel-1 (VDAC1)/glucose-regulated protein 75/inositol 1,4,5-trisphosphate receptor 1 complex and mitofusin 2 in endothelial cells during hypoxia/reoxygenation (H/R), and investigated the protective effects of acetylcholine. APPROACH AND RESULTS Acetylcholine treatmen...

متن کامل

Hypothermia Protects the Brain from Transient Global Ischemia/Reperfusion by Attenuating Endoplasmic Reticulum Response-Induced Apoptosis through CHOP

Endoplasmic reticulum (ER) stress has been implicated in the pathology of cerebral ischemia. Apoptotic cell death occurs during prolonged period of stress or when the adaptive response fails. Hypothermia blocked the TNF or Fas-mediated extrinsic apoptosis pathway and the mitochondria pathway of apoptosis, however, whether hypothermia can block endoplasmic reticulum mediated apoptosis is never k...

متن کامل

Paeoniflorin has anti-inflammation and neurogenesis functions through nicotinic acetylcholine receptors in cerebral ischemia-reperfusion injury rats

Objective(s): Paeoniflorin (PF) has anti-oxidation, anti-inflammation, anti-apoptosis, and neuroprotection pharmacological effects against ischemic injury. The aim of the present study was to investigate the neuroprotection mechanisms of PF in cerebral ischemia-reperfusion injury rats.Materials and Methods: We established an animal model of cerebral infarct by occlusion of the middle cerebral a...

متن کامل

Activation of liver-X-receptor α but not liver-X-receptor β protects against myocardial ischemia/reperfusion injury.

BACKGROUND Liver-X-receptors, LXRα (NR1H3) and LXRβ (NR1H2), encode 2 different but highly homologous isoforms of transcription factors belonging to the nuclear receptor superfamily. Whether LXRα and LXRβ subtypes have discrete roles in the regulation of cardiac physiology/pathology is unknown. We determine the role of each LXR subtype in myocardial ischemia/reperfusion (MI/R) injury. METHODS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015